update documentation

This commit is contained in:
Leon van Kammen 2023-09-04 21:20:59 +02:00
parent b6e16c3091
commit 8c844f1f5f
5 changed files with 2202 additions and 645 deletions

View File

@ -13,7 +13,7 @@
<style type="text/css">
body{
font-family: monospace;
max-width: 900px;
max-width: 1000px;
font-size: 15px;
padding: 0% 20%;
line-height: 30px;
@ -28,6 +28,15 @@
border-radius: 3px;
padding: 0px 5px 2px 5px;
}
pre{
line-height: 18px;
overflow: auto;
padding: 12px;
}
pre + code {
background:#DDD;
}
pre>code{
border:none;
border-radius:0px;
@ -38,6 +47,18 @@
margin: 0;
border-left: 5px solid #CCC;
}
th {
border-bottom: 1px solid #000;
text-align: left;
padding-right:45px;
padding-left:7px;
background: #DDD;
}
td {
border-bottom: 1px solid #CCC;
font-size:13px;
}
</style>
@ -59,40 +80,216 @@ value: draft-XRFRAGMENTS-leonvankammen-00
<h1 class="special" id="abstract">Abstract</h1>
<p>This draft offers a specification for 4D URLs &amp; navigation, to link 3D scenes and text together with- or without a network-connection.
The specification promotes spatial addressibility, sharing, navigation, query-ing and interactive text across for (XR) Browsers.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies like <a href="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</a> &amp; <a href="https://visual-meta.info">visual-meta</a>.</p>
<p>This draft offers a specification for 4D URLs &amp; navigation, to link 3D scenes and text together with- or without a network-connection.<br>
The specification promotes spatial addressibility, sharing, navigation, query-ing and tagging interactive (text)objects across for (XR) Browsers.<br>
XR Fragments allows us to enrich existing dataformats, by recursive use of existing proven technologies like <a href="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</a> and <a href="https://visual-meta.info">visual-meta</a>.<br></p>
<section data-matter="main">
<h1 id="introduction">Introduction</h1>
<p>How can we add more features to existing text &amp; 3D scenes, without introducing new dataformats?
Historically, there&rsquo;s many attempts to create the ultimate markuplanguage or 3D fileformat.
However, thru the lens of authoring their lowest common denominator is still: plain text.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:</p>
<p>How can we add more features to existing text &amp; 3D scenes, without introducing new dataformats?<br>
Historically, there&rsquo;s many attempts to create the ultimate markuplanguage or 3D fileformat.<br>
However, thru the lens of authoring their lowest common denominator is still: plain text.<br>
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:<br></p>
<ul>
<li>addressibility &amp; navigation of 3D objects: <a href="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</a> + (src/href) metadata</li>
<li>addressibility &amp; navigation of text objects: <a href="https://visual-meta.info">visual-meta</a></li>
</ul>
<ol>
<li>addressibility and navigation of 3D scenes/objects: <a href="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</a> + src/href spatial metadata</li>
<li>hasslefree tagging across text and spatial objects using BiBTeX (<a href="https://visual-meta.info">visual-meta</a> e.g.)</li>
</ol>
<blockquote>
<p>NOTE: The chapters in this document are ordered from highlevel to lowlevel (technical) as much as possible</p>
</blockquote>
<h1 id="conventions-and-definitions">Conventions and Definitions</h1>
<ul>
<li>scene: a (local/remote) 3D scene or 3D file (index.gltf e.g.)</li>
<li>3D object: an object inside a scene characterized by vertex-, face- and customproperty data.</li>
<li>metadata: custom properties defined in 3D Scene or Object(nodes)</li>
<li>XR fragment: URI Fragment with spatial hints (<code>#pos=0,0,0&amp;t=1,100</code> e.g.)</li>
<li>src: a (HTML-piggybacked) metadata-attribute of a 3D object which instances content</li>
<li>href: a (HTML-piggybacked) metadata-attribute of a 3D object which links to content</li>
<li>query: an URI Fragment-operator which queries object(s) from a scene (<code>#q=cube</code>)</li>
<li><a href="https://visual.meta.info">visual-meta</a>: metadata appended to text which is only indirectly visible/editable in XR.</li>
</ul>
<table>
<thead>
<tr>
<th>definition</th>
<th>explanation</th>
</tr>
</thead>
<p>{::boilerplate bcp14-tagged}</p>
<tbody>
<tr>
<td>human</td>
<td>a sentient being who thinks fuzzy, absorbs, and shares thought (by plain text, not markuplanguage)</td>
</tr>
<tr>
<td>scene</td>
<td>a (local/remote) 3D scene or 3D file (index.gltf e.g.)</td>
</tr>
<tr>
<td>3D object</td>
<td>an object inside a scene characterized by vertex-, face- and customproperty data.</td>
</tr>
<tr>
<td>metadata</td>
<td>custom properties of text, 3D Scene or Object(nodes), relevant to machines and a human minority (academics/developers)</td>
</tr>
<tr>
<td>XR fragment</td>
<td>URI Fragment with spatial hints (<code>#pos=0,0,0&amp;t=1,100</code> e.g.)</td>
</tr>
<tr>
<td>src</td>
<td>(HTML-piggybacked) metadata of a 3D object which instances content</td>
</tr>
<tr>
<td>href</td>
<td>(HTML-piggybacked) metadata of a 3D object which links to content</td>
</tr>
<tr>
<td>query</td>
<td>an URI Fragment-operator which queries object(s) from a scene (<code>#q=cube</code>)</td>
</tr>
<tr>
<td>visual-meta</td>
<td><a href="https://visual.meta.info">visual-meta</a> data appended to text which is indirectly visible/editable in XR.</td>
</tr>
<tr>
<td>requestless metadata</td>
<td>opposite of networked metadata (RDF/HTML request-fanouts easily cause framerate-dropping, hence not used a lot in games).</td>
</tr>
<tr>
<td>FPS</td>
<td>frames per second in spatial experiences (games,VR,AR e.g.), should be as high as possible</td>
</tr>
<tr>
<td>introspective</td>
<td>inward sensemaking (&ldquo;I feel this belongs to that&rdquo;)</td>
</tr>
<tr>
<td>extrospective</td>
<td>outward sensemaking (&ldquo;I&rsquo;m fairly sure John is a person who lives in oklahoma&rdquo;)</td>
</tr>
<tr>
<td><code></code></td>
<td>ascii representation of an 3D object/mesh</td>
</tr>
</tbody>
</table>
<h1 id="core-principle">Core principle</h1>
<p>XR Fragments strives to serve humans first, machine(implementations) later, by ensuring hasslefree text-to-thought feedback loops.<br>
This also means that the repair-ability of machine-matters should be human friendly too (not too complex).<br></p>
<blockquote>
<p>&ldquo;When a car breaks down, the ones without turbosupercharger are easier to fix&rdquo;</p>
</blockquote>
<h1 id="list-of-uri-fragments">List of URI Fragments</h1>
<table>
<thead>
<tr>
<th>fragment</th>
<th>type</th>
<th>example</th>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>#pos</code></td>
<td>vector3</td>
<td><code>#pos=0.5,0,0</code></td>
<td>positions camera to xyz-coord 0.5,0,0</td>
</tr>
<tr>
<td><code>#rot</code></td>
<td>vector3</td>
<td><code>#rot=0,90,0</code></td>
<td>rotates camera to xyz-coord 0.5,0,0</td>
</tr>
<tr>
<td><code>#t</code></td>
<td>vector2</td>
<td><code>#t=500,1000</code></td>
<td>sets animation-loop range between frame 500 and 1000</td>
</tr>
<tr>
<td><code>#......</code></td>
<td>string</td>
<td><code>#.cubes</code> <code>#cube</code></td>
<td>object(s) of interest (fragment to object name or class mapping)</td>
</tr>
</tbody>
</table>
<blockquote>
<p>xyz coordinates are similar to ones found in SVG Media Fragments</p>
</blockquote>
<h1 id="list-of-metadata-for-3d-nodes">List of metadata for 3D nodes</h1>
<table>
<thead>
<tr>
<th>key</th>
<th>type</th>
<th>example (JSON)</th>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>string</td>
<td><code>&quot;name&quot;: &quot;cube&quot;</code></td>
<td>available in all 3D fileformats &amp; scenes</td>
</tr>
<tr>
<td><code>class</code></td>
<td>string</td>
<td><code>&quot;class&quot;: &quot;cubes&quot;</code></td>
<td>available through custom property in 3D fileformats</td>
</tr>
<tr>
<td><code>href</code></td>
<td>string</td>
<td><code>&quot;href&quot;: &quot;b.gltf&quot;</code></td>
<td>available through custom property in 3D fileformats</td>
</tr>
<tr>
<td><code>src</code></td>
<td>string</td>
<td><code>&quot;src&quot;: &quot;#q=cube&quot;</code></td>
<td>available through custom property in 3D fileformats</td>
</tr>
</tbody>
</table>
<p>Popular compatible 3D fileformats: <code>.gltf</code>, <code>.obj</code>, <code>.fbx</code>, <code>.usdz</code>, <code>.json</code> (THREEjs), <code>COLLADA</code> and so on.</p>
<blockquote>
<p>NOTE: XR Fragments are file-agnostic, which means that the metadata exist in programmatic 3D scene(nodes) too.</p>
</blockquote>
<h1 id="navigating-3d">Navigating 3D</h1>
<p>Here&rsquo;s an ascii representation of a 3D scene-graph which contains 3D objects (<code></code>) and their metadata:</p>
<p>Here&rsquo;s an ascii representation of a 3D scene-graph which contains 3D objects <code></code> and their metadata:</p>
<pre><code> +--------------------------------------------------------+
| |
@ -102,134 +299,16 @@ XR Fragments allows us to enrich existing dataformats, by recursive use of exist
| │ └ href: #pos=1,0,1&amp;t=100,200 |
| │ |
| └── ◻ buttonB |
| └ href: other.fbx |
| └ href: other.fbx | &lt;-- file-agnostic (can be .gltf .obj etc)
| |
+--------------------------------------------------------+
</code></pre>
<p>An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the <code>buttonA</code> and <code>buttonB</code>.
<p>An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the <code>buttonA</code> and <code>buttonB</code>.<br>
In case of <code>buttonA</code> the end-user will be teleported to another location and time in the <strong>current loaded scene</strong>, but <code>buttonB</code> will
<strong>replace the current scene</strong> with a new one (<code>other.fbx</code>).</p>
<h1 id="navigating-text">Navigating text</h1>
<p>Text in XR has to be unobtrusive, for readers as well as authors.
We think and speak in simple text, and given the new paradigm of XR interfaces, logically (spoken) text must be enriched <em>afterwards</em> (lazy metadata).
Therefore, XR Fragment-compliant text will just be plain text, and <strong>not yet-another-markuplanguage</strong>.
In contrast to markup languages, this means humans need to be always served first, and machines later.</p>
<blockquote>
<p>Basically, a direct feedbackloop between unobtrusive text and human eye.</p>
</blockquote>
<p>Reality has shown that outsourcing rich textmanipulation to commercial formats or mono-markup browsers (HTML) have there usecases, but
also introduce barriers to thought-translation (which uses simple words).
As Marshall MCluhan said: we have become irrevocably involved with, and responsible for, each other.</p>
<p>In order enjoy hasslefree batteries-included programmable text (glossaries, flexible views, drag-drop e.g.), XR Fragment supports
<a href="https://visual.meta.info">visual-meta</a>(data).</p>
<h2 id="default-data-uri-mimetype">Default Data URI mimetype</h2>
<p>The XR Fragment specification bumps the traditional default browser-mimetype</p>
<p><code>text/plain;charset=US-ASCII</code></p>
<p>into:</p>
<p><code>text/plain;charset=utf-8;visual-meta=1</code></p>
<p>This means that <a href="https://visual.meta.info">visual-meta</a>(data) can be appended to plain text without being displayed.</p>
<h3 id="url-and-data-uri">URL and Data URI</h3>
<pre><code> +--------------------------------------------------------------+ +------------------------+
| | | author.com/article.txt |
| index.gltf | +------------------------+
| │ | | |
| ├── ◻ article_canvas | | Hello friends. |
| │ └ src: ://author.com/article.txt | | |
| │ | | @{visual-meta-start} |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @{visual-meta-start}...` | +------------------------+
| |
| |
+--------------------------------------------------------------+
</code></pre>
<p>The difference is that text (+visual-meta data) in Data URI is saved into the scene, which also promotes rich copy-paste.
In both cases will the text get rendered immediately (onto a plane geometry, hence the name &lsquo;_canvas&rsquo;).
The enduser can access visual-meta(data)-fields only after interacting with the object.</p>
<blockquote>
<p>NOTE: this is not to say that XR Browsers should not load HTML/PDF/etc-URLs thru <code>src</code>-metadata, it is just that <code>text/plain;charset=utf-8;visual-meta=1</code> is the minimum requirement.</p>
</blockquote>
<h2 id="omnidirectional-xr-annotations">omnidirectional XR annotations</h2>
<pre><code> +---------------------------------------------------------------+
| |
| index.gltf |
| │ |
| ├── ◻ todo |
| │ └ src:`data:learn about ARC @{visual-meta-start}...`|
| │ |
| └── ◻ ARC |
| └── ◻ plane |
| └ src: `data:ARC was revolutionary |
| @{visual-meta-start} |
| @{glossary-start} |
| @entry{ |
| name = {ARC}, |
| description = {Engelbart Concept: |
| Augmentation Research Center, |
| The name of Doug's lab at SRI. |
| }, |
| }` |
| |
+---------------------------------------------------------------+
</code></pre>
<p>Here we can see an 3D object of ARC, to which the enduser added a textnote (basically a plane geometry with <code>src</code>).
The enduser can view/edit visual-meta(data)-fields only after interacting with the object.
This allows the 3D scene to perform omnidirectional features for free, by omni-connecting the word &lsquo;ARC&rsquo;:</p>
<ul>
<li>the ARC object can draw a line to the &lsquo;ARC was revolutionary&rsquo;-note</li>
<li>the &lsquo;ARC was revolutionary&rsquo;-note can draw line to the &lsquo;learn about ARC&rsquo;-note</li>
<li>the &lsquo;learn about ARC&rsquo;-note can draw a line to the ARC 3D object</li>
</ul>
<h1 id="hyper-copy-paste">HYPER copy/paste</h1>
<p>The previous example, offers something exciting compared to simple textual copy-paste.
, XR Fragment offers 4D- and HYPER- copy/paste: time, space and text interlinked.
Therefore, the enduser in an XR Fragment-compatible browser can copy/paste/share data in these ways:</p>
<ul>
<li>copy ARC 3D object (incl. animation) &amp; paste elsewhere including visual-meta(data)</li>
<li>select the word ARC in any text, and paste a bundle of anything ARC-related</li>
</ul>
<h2 id="plain-text-with-optional-visual-meta">Plain Text (with optional visual-meta)</h2>
<p>In contrast to markuplanguage, the (dictated/written) text needs no parsing, stays intact, by postponing metadata to the appendix.</p>
<p>This allows for a very economic XR way to:</p>
<ul>
<li>directly write, dictate, render text (=fast, without markup-parser-overhead)</li>
<li>add/load metadata later (if provided)</li>
<li>enduser interactions with text (annotations,mutations) can be reflected back into the visual-meta(data) Data URI</li>
<li>copy/pasting of text will automatically cite the (mutated) source</li>
<li>allows annotating 3D objects as if they were textual representations (convert 3D document to text)</li>
</ul>
<blockquote>
<p>NOTE: visualmeta never breaks the original intended text (in contrast to forgetting a html closing-tag e.g.)</p>
</blockquote>
<h1 id="embedding-3d-content">Embedding 3D content</h1>
<p>Here&rsquo;s an ascii representation of a 3D scene-graph with 3D objects (<code></code>) which embeds remote &amp; local 3D objects (<code></code>) (without) using queries:</p>
@ -253,15 +332,483 @@ Therefore, the enduser in an XR Fragment-compatible browser can copy/paste/share
+--------------------------------------------------------+
</code></pre>
<p>An XR Fragment-compatible browser viewing this scene, lazy-loads and projects <code>painting.png</code> onto the (plane) object called <code>canvas</code> (which is copy-instanced in the bed and livingroom).
Also, after lazy-loading <code>ocean.com/aquarium.gltf</code>, only the queried objects <code>bass</code> and <code>tuna</code> will be instanced inside <code>aquariumcube</code>.
Resizing will be happen accordingly to its placeholder object (<code>aquariumcube</code>), see chapter Scaling.</p>
<p>An XR Fragment-compatible browser viewing this scene, lazy-loads and projects <code>painting.png</code> onto the (plane) object called <code>canvas</code> (which is copy-instanced in the bed and livingroom).<br>
Also, after lazy-loading <code>ocean.com/aquarium.gltf</code>, only the queried objects <code>bass</code> and <code>tuna</code> will be instanced inside <code>aquariumcube</code>.<br>
Resizing will be happen accordingly to its placeholder object (<code>aquariumcube</code>), see chapter Scaling.<br></p>
<h1 id="list-of-xr-uri-fragments">List of XR URI Fragments</h1>
<h1 id="text-in-xr-tagging-linking-to-spatial-objects">Text in XR (tagging,linking to spatial objects)</h1>
<p>We still think and speak in simple text, not in HTML or RDF.<br>
It would be funny when people would shout <code>&lt;h1&gt;FIRE!&lt;/h1&gt;</code> in case of emergency.<br>
Given the myriad of new (non-keyboard) XR interfaces, keeping text as is (not obscuring with markup) is preferred.<br>
Ideally metadata must come <strong>later with</strong> text, but not <strong>obfuscate</strong> the text, or <strong>in another</strong> file.<br></p>
<blockquote>
<p>Humans first, machines (AI) later.</p>
</blockquote>
<p>This way:</p>
<ol>
<li>XR Fragments allows <b id="tagging-text">hasslefree XR text tagging</b>, using BibTeX metadata <strong>at the end of content</strong> (like <a href="https://visual.meta.info">visual-meta</a>).</li>
<li>XR Fragments allows hasslefree <a href="#textual-tag">textual tagging</a>, <a href="#spatial-tag">spatial tagging</a>, and <a href="#supra-tagging">supra tagging</a>, by mapping 3D/text object (class)names to BibTeX</li>
<li>inline BibTeX is the minimum required <strong>requestless metadata</strong>-layer for XR text, RDF/JSON is great but optional (and too verbose for the spec-usecases).</li>
<li>Default font (unless specified otherwise) is a modern monospace font, for maximized tabular expressiveness (see <a href="#core-principle">the core principle</a>).</li>
<li>anti-pattern: hardcoupling a mandatory <strong>obtrusive markuplanguage</strong> or framework with an XR browsers (HTML/VRML/Javascript) (see <a href="#core-principle">the core principle</a>)</li>
<li>anti-pattern: limiting human introspection, by immediately funneling human thought into typesafe, precise, pre-categorized metadata like RDF (see <a href="#core-principle">the core principle</a>)</li>
</ol>
<p>This allows recursive connections between text itself, as well as 3D objects and vice versa, using <strong>BiBTeX-tags</strong> :</p>
<pre><code> +--------------------------------------------------+
| My Notes |
| |
| The houses seen here are built in baroque style. |
| |
| @house{houses, &lt;----- XR Fragment triple/tag: tiny &amp; phrase-matching BiBTeX
| url = {#.house} &lt;------------------- XR Fragment URI
| } |
+--------------------------------------------------+
</code></pre>
<p>This sets up the following associations in the scene:</p>
<ol>
<li><b id="textual-tagging">textual tag</b>: text or spatial-occurences named &lsquo;houses&rsquo; is now automatically tagged with &lsquo;house&rsquo;</li>
<li><b id="spatial-tagging">spatial tag</b>: spatial object(s) with class:house (#.house) is now automatically tagged with &lsquo;house&rsquo;</li>
<li><b id="supra-tagging">supra-tag</b>: text- or spatial-object named &lsquo;house&rsquo; (spatially) elsewhere, is now automatically tagged with &lsquo;house&rsquo;</li>
</ol>
<p>Spatial wires can be rendered, words can be highlighted, spatial objects can be highlighted, links can be manipulated by the user.</p>
<blockquote>
<p>The simplicity of appending BibTeX (humans first, machines later) is demonstrated by <a href="https://visual-meta.info">visual-meta</a> in greater detail, and makes it perfect for GUI&rsquo;s to generate (bib)text later. Humans can still view/edit the metadata manually, by clicking &lsquo;toggle metadata&rsquo; on the &lsquo;back&rsquo; (contextmenu e.g.) of any XR text, anywhere anytime.</p>
</blockquote>
<h2 id="default-data-uri-mimetype">Default Data URI mimetype</h2>
<p>The <code>src</code>-values work as expected (respecting mime-types), however:</p>
<p>The XR Fragment specification bumps the traditional default browser-mimetype</p>
<p><code>text/plain;charset=US-ASCII</code></p>
<p>to a green eco-friendly:</p>
<p><code>text/plain;charset=utf-8;bibtex=^@</code></p>
<p>This indicates that any bibtex metadata starting with <code>@</code> will automatically get filtered out and:</p>
<ul>
<li>automatically detects textual links between textual and spatial objects</li>
</ul>
<p>It&rsquo;s concept is similar to literate programming.
Its implications are that local/remote responses can now:</p>
<ul>
<li>(de)multiplex/repair human text and requestless metadata (see <a href="#core-principle">the core principle</a>)</li>
<li>no separated implementation/network-overhead for metadata (see <a href="#core-principle">the core principle</a>)</li>
<li>ensuring high FPS: HTML/RDF historically is too &lsquo;requesty&rsquo; for game studios</li>
<li>rich send/receive/copy-paste everywhere by default, metadata being retained (see <a href="#core-principle">the core principle</a>)</li>
<li>less network requests, therefore less webservices, therefore less servers, and overall better FPS in XR</li>
</ul>
<blockquote>
<p>This significantly expands expressiveness and portability of human text, by <strong>postponing machine-concerns to the end of the human text</strong> in contrast to literal interweaving of content and markupsymbols (or extra network requests, webservices e.g.).</p>
</blockquote>
<p>For all other purposes, regular mimetypes can be used (but are not required by the spec).<br>
To keep XR Fragments a lightweight spec, BiBTeX is used for text-spatial object mappings (not a scripting language or RDF e.g.).</p>
<blockquote>
<p>Applications are also free to attach any JSON(LD / RDF) to spatial objects using custom properties (but is not interpreted by this spec).</p>
</blockquote>
<h2 id="url-and-data-uri">URL and Data URI</h2>
<pre><code> +--------------------------------------------------------------+ +------------------------+
| | | author.com/article.txt |
| index.gltf | +------------------------+
| │ | | |
| ├── ◻ article_canvas | | Hello friends. |
| │ └ src: ://author.com/article.txt | | |
| │ | | @friend{friends |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @...` | | } |
| | +------------------------+
| |
+--------------------------------------------------------------+
</code></pre>
<p>The enduser will only see <code>welcome human</code> and <code>Hello friends</code> rendered spatially.
The beauty is that text (AND visual-meta) in Data URI promotes rich copy-paste.
In both cases, the text gets rendered immediately (onto a plane geometry, hence the name &lsquo;_canvas&rsquo;).
The XR Fragment-compatible browser can let the enduser access visual-meta(data)-fields after interacting with the object (contextmenu e.g.).</p>
<p>The mapping between 3D objects and text (src-data) is simple:</p>
<p>Example:</p>
<pre><code> +------------------------------------------------------------------------------------+
| |
| index.gltf |
| │ |
| └── ◻ rentalhouse |
| └ class: house |
| └ ◻ note |
| └ src:`data: todo: call owner |
| @house{owner, |
| url = {#.house} |
| }` |
+------------------------------------------------------------------------------------+
</code></pre>
<p>Attaching visualmeta as <code>src</code> metadata to the (root) scene-node hints the XR Fragment browser.
3D object names and classes map to <code>name</code> of visual-meta glossary-entries.
This allows rich interaction and interlinking between text and 3D objects:</p>
<ol>
<li>When the user surfs to https://&hellip;/index.gltf#AI the XR Fragments-parser points the enduser to the AI object, and can show contextual info about it.</li>
<li>When (partial) remote content is embedded thru XR Fragment queries (see XR Fragment queries), its related visual-meta can be embedded along.</li>
</ol>
<h2 id="bibtex-as-lowest-common-denominator-for-tagging-triple">BibTeX as lowest common denominator for tagging/triple</h2>
<p>The everything-is-text focus of BiBTex is a great advantage for introspection, and perhaps a necessary bridge towards RDF (extrospective).
BibTeX-appendices (visual-meta e.g.) are already adopted in the physical world (academic books), perhaps due to its terseness &amp; simplicity:</p>
<ol>
<li><b id="frictionless-copy-paste">frictionless copy/pasting</b> (by humans) of (unobtrusive) content AND metadata</li>
<li>an introspective &lsquo;sketchpad&rsquo; for metadata, which can (optionally) mature into RDF later</li>
</ol>
<table>
<thead>
<tr>
<th>characteristic</th>
<th>Plain Text (with BibTeX)</th>
<th>RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>perspective</td>
<td>introspective</td>
<td>extrospective</td>
</tr>
<tr>
<td>space/scope</td>
<td>local</td>
<td>world</td>
</tr>
<tr>
<td>everything is text (string)</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>leaves (dictated) text intact</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>markup language(s)</td>
<td>no (appendix)</td>
<td>~4 different</td>
</tr>
<tr>
<td>polyglot format</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>easy to copy/paste content+metadata</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>easy to write/repair</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>easy to parse</td>
<td>yes (fits on A4 paper)</td>
<td>depends</td>
</tr>
<tr>
<td>infrastructure storage</td>
<td>selfcontained (plain text)</td>
<td>(semi)networked</td>
</tr>
<tr>
<td>tagging</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>freeform tagging/notes</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>specialized file-type</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>copy-paste preserves metadata</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>emoji</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>predicates</td>
<td>free</td>
<td>pre-determined</td>
</tr>
<tr>
<td>implementation/network overhead</td>
<td>no</td>
<td>depends</td>
</tr>
<tr>
<td>used in (physical) books/PDF</td>
<td>yes (visual-meta)</td>
<td>no</td>
</tr>
<tr>
<td>terse categoryless predicates</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>nested structures</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
<blockquote>
<p>To serve humans first, human &lsquo;fuzzy symbolical mind&rsquo; comes first, and <a href="https://en.wikipedia.org/wiki/Borg">&lsquo;categorized typesafe RDF hive mind&rsquo;</a>) later.</p>
</blockquote>
<h2 id="xr-text-bibtex-example-parser">XR text (BibTeX) example parser</h2>
<p>Here&rsquo;s a naive XR Text (de)multiplexer in javascript (which also supports visual-meta start/end-blocks):</p>
<pre><code>xrtext = {
decode: {
text: (str) =&gt; {
let meta={}, text='', last='', data = '';
str.split(/\r?\n/).map( (line) =&gt; {
if( !data ) data = last === '' &amp;&amp; line.match(/^@/) ? line[0] : ''
if( data ){
if( line === '' ){
xrtext.decode.bibtex(data.substr(1),meta)
data=''
}else data += `${line}\n`
}
text += data ? '' : `${line}\n`
last=line
})
return {text, meta}
},
bibtex: (str,meta) =&gt; {
let st = [meta]
str
.split(/\r?\n/ )
.map( s =&gt; s.trim() ).join(&quot;\n&quot;) // be nice
.replace( /}@/, &quot;}\n@&quot; ) // to authors
.replace( /},}/, &quot;},\n}&quot; ) // which struggle
.replace( /^}/, &quot;\n}&quot; ) // with writing single-line BiBTeX
.split( /\n/ ) //
.filter( c =&gt; c.trim() ) // actual processing:
.map( (s) =&gt; {
if( s.match(/(^}|-end})/) &amp;&amp; st.length &gt; 1 ) st.shift()
else if( s.match(/^@/) ) st.unshift( st[0][ s.replace(/(-start|,)/g,'') ] = {} )
else s.replace( /(\w+)\s*=\s*{(.*)}(,)?/g, (m,k,v) =&gt; st[0][k] = v )
})
return meta
}
},
encode: (text,meta) =&gt; {
if( text === false ){
if (typeof meta === &quot;object&quot;) {
return Object.keys(meta).map(k =&gt;
typeof meta[k] == &quot;string&quot;
? ` ${k} = {${meta[k]}},`
: `${ k.match(/[}{]$/) ? k.replace('}','-start}') : `${k},` }\n` +
`${ xrtext.encode( false, meta[k])}\n` +
`${ k.match(/}$/) ? k.replace('}','-end}') : '}' }\n`
.split(&quot;\n&quot;).filter( s =&gt; s.trim() ).join(&quot;\n&quot;)
)
.join(&quot;\n&quot;)
}
return meta.toString();
}else return `${text}\n${xrtext.encode(false,meta)}`
}
}
var {meta,text} = xrtext.decode.text(str) // demultiplex text &amp; bibtex
meta['@foo{'] = { &quot;note&quot;:&quot;note from the user&quot;} // edit metadata
xrtext.encode(text,meta) // multiplex text &amp; bibtex back together
</code></pre>
<blockquote>
<p>above can be used as a startingpoint for LLVM&rsquo;s to translate/steelman to any language.</p>
</blockquote>
<h1 id="hyper-copy-paste">HYPER copy/paste</h1>
<p>The previous example, offers something exciting compared to simple copy/paste of 3D objects or text.
XR Fragment allows HYPER-copy/paste: time, space and text interlinked.
Therefore, the enduser in an XR Fragment-compatible browser can copy/paste/share data in these ways:</p>
<ul>
<li>time/space: 3D object (current animation-loop)</li>
<li>text: TeXt object (including BiBTeX/visual-meta if any)</li>
<li>interlinked: Collected objects by visual-meta tag</li>
</ul>
<h1 id="xr-fragment-queries">XR Fragment queries</h1>
<p>Include, exclude, hide/shows objects using space-separated strings:</p>
<ul>
<li><code>#q=cube</code></li>
<li><code>#q=cube -ball_inside_cube</code></li>
<li><code>#q=* -sky</code></li>
<li><code>#q=-.language .english</code></li>
<li><code>#q=cube&amp;rot=0,90,0</code></li>
<li><code>#q=price:&gt;2 price:&lt;5</code></li>
</ul>
<p>It&rsquo;s simple but powerful syntax which allows <b>css</b>-like class/id-selectors with a searchengine prompt-style feeling:</p>
<ol>
<li>queries are only executed when <b>embedded</b> in the asset/scene (thru <code>src</code>). This is to prevent sharing of scene-tampered URL&rsquo;s.</li>
<li>search words are matched against 3D object names or metadata-key(values)</li>
<li><code>#</code> equals <code>#q=*</code></li>
<li>words starting with <code>.</code> (<code>.language</code>) indicate class-properties</li>
</ol>
<blockquote>
<p>*(*For example**: <code>#q=.foo</code> is a shorthand for <code>#q=class:foo</code>, which will select objects with custom property <code>class</code>:<code>foo</code>. Just a simple <code>#q=cube</code> will simply select an object named <code>cube</code>.</p>
</blockquote>
<ul>
<li>see <a href="https://coderofsalvation.github.io/xrfragment.media/queries.mp4">an example video here</a></li>
</ul>
<h2 id="including-excluding">including/excluding</h2>
<p>|&ldquo;operator&rdquo; | &ldquo;info&rdquo; |
|<code>*</code> | select all objects (only allowed in <code>src</code> custom property) in the <b>current</b> scene (<b>after</b> the default [[predefined_view|predefined_view]] <code>#</code> was executed)|
|<code>-</code> | removes/hides object(s) |
|<code>:</code> | indicates an object-embedded custom property key/value |
|<code>.</code> | alias for <code>class:</code> (<code>.foo</code> equals <code>class:foo</code> |
|<code>&gt;</code> <code>&lt;</code>| compare float or int number|
|<code>/</code> | reference to root-scene.<br>Useful in case of (preventing) showing/hiding objects in nested scenes (instanced by [[src]])<br><code>#q=-/cube</code> hides object <code>cube</code> only in the root-scene (not nested <code>cube</code> objects)<br> <code>#q=-cube</code> hides both object <code>cube</code> in the root-scene <b>AND</b> nested <code>skybox</code> objects |</p>
<p><a href="https://github.com/coderofsalvation/xrfragment/blob/main/src/3rd/js/three/xrf/q.js">» example implementation</a>
<a href="https://github.com/coderofsalvation/xrfragment/blob/main/example/assets/query.gltf#L192">» example 3D asset</a>
<a href="https://github.com/coderofsalvation/xrfragment/issues/3">» discussion</a></p>
<h2 id="query-parser">Query Parser</h2>
<p>Here&rsquo;s how to write a query parser:</p>
<ol>
<li>create an associative array/object to store query-arguments as objects</li>
<li>detect object id&rsquo;s &amp; properties <code>foo:1</code> and <code>foo</code> (reference regex: <code>/^.*:[&gt;&lt;=!]?/</code> )</li>
<li>detect excluders like <code>-foo</code>,<code>-foo:1</code>,<code>-.foo</code>,<code>-/foo</code> (reference regex: <code>/^-/</code> )</li>
<li>detect root selectors like <code>/foo</code> (reference regex: <code>/^[-]?\//</code> )</li>
<li>detect class selectors like <code>.foo</code> (reference regex: <code>/^[-]?class$/</code> )</li>
<li>detect number values like <code>foo:1</code> (reference regex: <code>/^[0-9\.]+$/</code> )</li>
<li>expand aliases like <code>.foo</code> into <code>class:foo</code></li>
<li>for every query token split string on <code>:</code></li>
<li>create an empty array <code>rules</code></li>
<li>then strip key-operator: convert &ldquo;-foo&rdquo; into &ldquo;foo&rdquo;</li>
<li>add operator and value to rule-array</li>
<li>therefore we we set <code>id</code> to <code>true</code> or <code>false</code> (false=excluder <code>-</code>)</li>
<li>and we set <code>root</code> to <code>true</code> or <code>false</code> (true=<code>/</code> root selector is present)</li>
<li>we convert key &lsquo;/foo&rsquo; into &lsquo;foo&rsquo;</li>
<li>finally we add the key/value to the store (<code>store.foo = {id:false,root:true}</code> e.g.)</li>
</ol>
<blockquote>
<p>An example query-parser (which compiles to many languages) can be <a href="https://github.com/coderofsalvation/xrfragment/blob/main/src/xrfragment/Query.hx">found here</a></p>
</blockquote>
<h2 id="xr-fragment-uri-grammar">XR Fragment URI Grammar</h2>
<pre><code>reserved = gen-delims / sub-delims
gen-delims = &quot;#&quot; / &quot;&amp;&quot;
sub-delims = &quot;,&quot; / &quot;=&quot;
</code></pre>
<blockquote>
<p>Example: <code>://foo.com/my3d.gltf#pos=1,0,0&amp;prio=-5&amp;t=0,100</code></p>
</blockquote>
<table>
<thead>
<tr>
<th>Demo</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pos=1,2,3</code></td>
<td>vector/coordinate argument e.g.</td>
</tr>
<tr>
<td><code>pos=1,2,3&amp;rot=0,90,0&amp;q=.foo</code></td>
<td>combinators</td>
</tr>
</tbody>
</table>
<h1 id="security-considerations">Security Considerations</h1>
<p>TODO Security</p>
<p>Since XR Text contains metadata too, the user should be able to set up tagging-rules, so the copy-paste feature can :</p>
<ul>
<li>filter out sensitive data when copy/pasting (XR text with <code>class:secret</code> e.g.)</li>
</ul>
<h1 id="iana-considerations">IANA Considerations</h1>

View File

@ -25,7 +25,7 @@ fullname="L.R. van Kammen"
<style type="text/css">
body{
font-family: monospace;
max-width: 900px;
max-width: 1000px;
font-size: 15px;
padding: 0% 20%;
line-height: 30px;
@ -40,6 +40,15 @@ fullname="L.R. van Kammen"
border-radius: 3px;
padding: 0px 5px 2px 5px;
}
pre{
line-height: 18px;
overflow: auto;
padding: 12px;
}
pre + code {
background:#DDD;
}
pre>code{
border:none;
border-radius:0px;
@ -50,6 +59,18 @@ fullname="L.R. van Kammen"
margin: 0;
border-left: 5px solid #CCC;
}
th {
border-bottom: 1px solid #000;
text-align: left;
padding-right:45px;
padding-left:7px;
background: #DDD;
}
td {
border-bottom: 1px solid #CCC;
font-size:13px;
}
</style>
@ -72,53 +93,77 @@ value: draft-XRFRAGMENTS-leonvankammen-00
.# Abstract
This draft offers a specification for 4D URLs & navigation, to link 3D scenes and text together with- or without a network-connection.
The specification promotes spatial addressibility, sharing, navigation, query-ing and interactive text across for (XR) Browsers.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies like [URI Fragments](https://en.wikipedia.org/wiki/URI_fragment) & [visual-meta](https://visual-meta.info).
This draft offers a specification for 4D URLs & navigation, to link 3D scenes and text together with- or without a network-connection.<br>
The specification promotes spatial addressibility, sharing, navigation, query-ing and tagging interactive (text)objects across for (XR) Browsers.<br>
XR Fragments allows us to enrich existing dataformats, by recursive use of existing proven technologies like [URI Fragments](https://en.wikipedia.org/wiki/URI_fragment) and [visual-meta](https://visual-meta.info).<br>
{mainmatter}
# Introduction
How can we add more features to existing text & 3D scenes, without introducing new dataformats?
Historically, there's many attempts to create the ultimate markuplanguage or 3D fileformat.
However, thru the lens of authoring their lowest common denominator is still: plain text.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:
How can we add more features to existing text & 3D scenes, without introducing new dataformats?<br>
Historically, there's many attempts to create the ultimate markuplanguage or 3D fileformat.<br>
However, thru the lens of authoring their lowest common denominator is still: plain text.<br>
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:<br>
* addressibility & navigation of 3D objects: [URI Fragments](https://en.wikipedia.org/wiki/URI_fragment) + (src/href) metadata
* hasslefree bi-directional links between text and spatial objects using [visual-meta & RDF](https://visual-meta.info)
1. addressibility and navigation of 3D scenes/objects: [URI Fragments](https://en.wikipedia.org/wiki/URI_fragment) + src/href spatial metadata
1. hasslefree tagging across text and spatial objects using BiBTeX ([visual-meta](https://visual-meta.info) e.g.)
> NOTE: The chapters in this document are ordered from highlevel to lowlevel (technical) as much as possible
# Conventions and Definitions
* scene: a (local/remote) 3D scene or 3D file (index.gltf e.g.)
* 3D object: an object inside a scene characterized by vertex-, face- and customproperty data.
* metadata: custom properties defined in 3D Scene or Object(nodes)
* XR fragment: URI Fragment with spatial hints (`#pos=0,0,0&t=1,100` e.g.)
* src: a (HTML-piggybacked) metadata-attribute of a 3D object which instances content
* href: a (HTML-piggybacked) metadata-attribute of a 3D object which links to content
* query: an URI Fragment-operator which queries object(s) from a scene (`#q=cube`)
* [visual-meta](https://visual.meta.info): metadata appended to text which is only indirectly visible/editable in XR.
|definition | explanation |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
|human | a sentient being who thinks fuzzy, absorbs, and shares thought (by plain text, not markuplanguage) |
|scene | a (local/remote) 3D scene or 3D file (index.gltf e.g.) |
|3D object | an object inside a scene characterized by vertex-, face- and customproperty data. |
|metadata | custom properties of text, 3D Scene or Object(nodes), relevant to machines and a human minority (academics/developers) |
|XR fragment | URI Fragment with spatial hints (`#pos=0,0,0&t=1,100` e.g.) |
|src | (HTML-piggybacked) metadata of a 3D object which instances content |
|href | (HTML-piggybacked) metadata of a 3D object which links to content |
|query | an URI Fragment-operator which queries object(s) from a scene (`#q=cube`) |
|visual-meta | [visual-meta](https://visual.meta.info) data appended to text which is indirectly visible/editable in XR. |
|requestless metadata | opposite of networked metadata (RDF/HTML request-fanouts easily cause framerate-dropping, hence not used a lot in games). |
|FPS | frames per second in spatial experiences (games,VR,AR e.g.), should be as high as possible |
|introspective | inward sensemaking ("I feel this belongs to that") |
|extrospective | outward sensemaking ("I'm fairly sure John is a person who lives in oklahoma") |
|`◻` | ascii representation of an 3D object/mesh |
{::boilerplate bcp14-tagged}
# Core principle
XR Fragments strives to serve humans first, machine(implementations) later, by ensuring hasslefree text-to-thought feedback loops.<br>
This also means that the repair-ability of machine-matters should be human friendly too (not too complex).<br>
> "When a car breaks down, the ones without turbosupercharger are easier to fix"
# List of URI Fragments
| fragment | type | example | info |
|--------------|----------|---------------|------------------------------------------------------|
| #pos | vector3 | #pos=0.5,0,0 | positions camera to xyz-coord 0.5,0,0 |
| #rot | vector3 | #rot=0,90,0 | rotates camera to xyz-coord 0.5,0,0 |
| #t | vector2 | #t=500,1000 | sets animation-loop range between frame 500 and 1000 |
| fragment | type | example | info |
|--------------|----------|-------------------|-------------------------------------------------------------------|
| `#pos` | vector3 | `#pos=0.5,0,0` | positions camera to xyz-coord 0.5,0,0 |
| `#rot` | vector3 | `#rot=0,90,0` | rotates camera to xyz-coord 0.5,0,0 |
| `#t` | vector2 | `#t=500,1000` | sets animation-loop range between frame 500 and 1000 |
| `#......` | string | `#.cubes` `#cube` | object(s) of interest (fragment to object name or class mapping) |
> xyz coordinates are similar to ones found in SVG Media Fragments
# List of metadata for 3D nodes
| key | type | example | info |
|--------------|----------|-----------------|--------------------------------------------------------|
| name | string | name: "cube" | already available in all 3D fileformats & scenes |
| class | string | class: "cubes" | supported through custom property in 3D fileformats |
| href | string | href: "b.gltf" | supported through custom property in 3D fileformats |
| src | string | src: "#q=cube" | supported through custom property in 3D fileformats |
| key | type | example (JSON) | info |
|--------------|----------|--------------------|--------------------------------------------------------|
| `name` | string | `"name": "cube"` | available in all 3D fileformats & scenes |
| `class` | string | `"class": "cubes"` | available through custom property in 3D fileformats |
| `href` | string | `"href": "b.gltf"` | available through custom property in 3D fileformats |
| `src` | string | `"src": "#q=cube"` | available through custom property in 3D fileformats |
Popular compatible 3D fileformats: `.gltf`, `.obj`, `.fbx`, `.usdz`, `.json` (THREEjs), `COLLADA` and so on.
> NOTE: XR Fragments are file-agnostic, which means that the metadata exist in programmatic 3D scene(nodes) too.
# Navigating 3D
Here's an ascii representation of a 3D scene-graph which contains 3D objects (`◻`) and their metadata:
Here's an ascii representation of a 3D scene-graph which contains 3D objects `◻` and their metadata:
```
+--------------------------------------------------------+
@ -129,13 +174,13 @@ Here's an ascii representation of a 3D scene-graph which contains 3D objects (`
| │ └ href: #pos=1,0,1&t=100,200 |
| │ |
| └── ◻ buttonB |
| └ href: other.fbx |
| └ href: other.fbx | <-- file-agnostic (can be .gltf .obj etc)
| |
+--------------------------------------------------------+
```
An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the `buttonA` and `buttonB`.
An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the `buttonA` and `buttonB`.<br>
In case of `buttonA` the end-user will be teleported to another location and time in the **current loaded scene**, but `buttonB` will
**replace the current scene** with a new one (`other.fbx`).
@ -163,66 +208,86 @@ Here's an ascii representation of a 3D scene-graph with 3D objects (`◻`) which
+--------------------------------------------------------+
```
An XR Fragment-compatible browser viewing this scene, lazy-loads and projects `painting.png` onto the (plane) object called `canvas` (which is copy-instanced in the bed and livingroom).
Also, after lazy-loading `ocean.com/aquarium.gltf`, only the queried objects `bass` and `tuna` will be instanced inside `aquariumcube`.
Resizing will be happen accordingly to its placeholder object (`aquariumcube`), see chapter Scaling.
An XR Fragment-compatible browser viewing this scene, lazy-loads and projects `painting.png` onto the (plane) object called `canvas` (which is copy-instanced in the bed and livingroom).<br>
Also, after lazy-loading `ocean.com/aquarium.gltf`, only the queried objects `bass` and `tuna` will be instanced inside `aquariumcube`.<br>
Resizing will be happen accordingly to its placeholder object (`aquariumcube`), see chapter Scaling.<br>
# Embedding text
# Text in XR (tagging,linking to spatial objects)
Text in XR has to be unobtrusive, for readers as well as authors.
We think and speak in simple text, and given the new (non-keyboard) paradigm of XR interfaces, keeping text as is (not obscuring with markup) is preferred.
Therefore, forcing text into **yet-another-markuplanguage** is not going to get us very far.
When XR interfaces always guarantee direct feedbackloops between plainttext and humans, metadata must come **with** the text (not **in** the text).
XR Fragments enjoys hasslefree rich text, by adding BibTex metadata (like [visual-meta](https://visual.meta.info)) support to plain text & 3D ojects:
We still think and speak in simple text, not in HTML or RDF.<br>
It would be funny when people would shout `<h1>FIRE!</h1>` in case of emergency.<br>
Given the myriad of new (non-keyboard) XR interfaces, keeping text as is (not obscuring with markup) is preferred.<br>
Ideally metadata must come **later with** text, but not **obfuscate** the text, or **in another** file.<br>
> Humans first, machines (AI) later.
This way:
1. XR Fragments allows <b id="tagging-text">hasslefree XR text tagging</b>, using BibTeX metadata **at the end of content** (like [visual-meta](https://visual.meta.info)).
1. XR Fragments allows hasslefree <a href="#textual-tag">textual tagging</a>, <a href="#spatial-tag">spatial tagging</a>, and <a href="#supra-tagging">supra tagging</a>, by mapping 3D/text object (class)names to BibTeX
3. inline BibTeX is the minimum required **requestless metadata**-layer for XR text, RDF/JSON is great but optional (and too verbose for the spec-usecases).
5. Default font (unless specified otherwise) is a modern monospace font, for maximized tabular expressiveness (see [the core principle](#core-principle)).
6. anti-pattern: hardcoupling a mandatory **obtrusive markuplanguage** or framework with an XR browsers (HTML/VRML/Javascript) (see [the core principle](#core-principle))
7. anti-pattern: limiting human introspection, by immediately funneling human thought into typesafe, precise, pre-categorized metadata like RDF (see [the core principle](#core-principle))
This allows recursive connections between text itself, as well as 3D objects and vice versa, using **BiBTeX-tags** :
```
This is John, and his houses can be seen here
@house{houses,
note = {todo: find out who John is}
url = {#pos=0,0,1&rot=0,0,0&t=1,100} <--- optional
mov = {1,0,0} <--- optional
}
+--------------------------------------------------+
| My Notes |
| |
| The houses seen here are built in baroque style. |
| |
| @house{houses, <----- XR Fragment triple/tag: tiny & phrase-matching BiBTeX
| url = {#.house} <------------------- XR Fragment URI
| } |
+--------------------------------------------------+
```
Now 3D- and/or text-object(s) named 'house' or have class '.house' are now associated with this text.
Optionally, an url **with** XR Fragments can be added to, to restore the user position during metadata-creation.
This sets up the following associations in the scene:
> This way, humans get always get served first, and machines later.
1. <b id="textual-tagging">textual tag</b>: text or spatial-occurences named 'houses' is now automatically tagged with 'house'
1. <b id="spatial-tagging">spatial tag</b>: spatial object(s) with class:house (#.house) is now automatically tagged with 'house'
1. <b id="supra-tagging">supra-tag</b>: text- or spatial-object named 'house' (spatially) elsewhere, is now automatically tagged with 'house'
Spatial wires can be rendered, words can be highlighted, spatial objects can be highlighted, links can be manipulated by the user.
> The simplicity of appending BibTeX (humans first, machines later) is demonstrated by [visual-meta](https://visual-meta.info) in greater detail, and makes it perfect for GUI's to generate (bib)text later. Humans can still view/edit the metadata manually, by clicking 'toggle metadata' on the 'back' (contextmenu e.g.) of any XR text, anywhere anytime.
## Default Data URI mimetype
The `src`-values work as expected (respecting mime-types), however:
The XR Fragment specification bumps the traditional default browser-mimetype
`text/plain;charset=US-ASCII`
to:
to a green eco-friendly:
`text/plain;charset=utf-8;meta=bibtex`
`text/plain;charset=utf-8;bibtex=^@`
The idea is that (unrendered) offline metadata is always transmitted/copypasted along with the actual text.
This expands human expressiveness significantly, by removing layers of complexity.
BibTex-notation is already wide-spread in the academic world, and has shown to be the lowest common denominator for copy/pasting content AND metadata:
This indicates that any bibtex metadata starting with `@` will automatically get filtered out and:
| characteristic | UTF-8 BibTex | RDF |
|-------------------------------|-----------------------------|--------------|
| perspective | introspective | extrospective|
| space/scope | local | world |
| leaves (dictated) text intact | yes | no |
| markup language(s) | no (appendix) | ~4 different |
| polyglot | no | yes |
| easy to parse | yes (fits on A4 paper) | depends |
| infrastructure | selfcontained (plain text) | networked |
| tagging | yes | yes |
| freeform tagging/notes | yes | depends |
| file-agnostic | yes | yes |
| copy-paste preserves metadata | yes | depends |
| emoji | yes | depends |
* automatically detects textual links between textual and spatial objects
> This is NOT to say that RDF should not be used by XR Browsers in auxilary or interlinked ways, it means that the XR Fragments spec has a more introspective scope.
It's concept is similar to literate programming.
Its implications are that local/remote responses can now:
### URL and Data URI
* (de)multiplex/repair human text and requestless metadata (see [the core principle](#core-principle))
* no separated implementation/network-overhead for metadata (see [the core principle](#core-principle))
* ensuring high FPS: HTML/RDF historically is too 'requesty' for game studios
* rich send/receive/copy-paste everywhere by default, metadata being retained (see [the core principle](#core-principle))
* less network requests, therefore less webservices, therefore less servers, and overall better FPS in XR
> This significantly expands expressiveness and portability of human text, by **postponing machine-concerns to the end of the human text** in contrast to literal interweaving of content and markupsymbols (or extra network requests, webservices e.g.).
For all other purposes, regular mimetypes can be used (but are not required by the spec).<br>
To keep XR Fragments a lightweight spec, BiBTeX is used for text-spatial object mappings (not a scripting language or RDF e.g.).
> Applications are also free to attach any JSON(LD / RDF) to spatial objects using custom properties (but is not interpreted by this spec).
## URL and Data URI
```
+--------------------------------------------------------------+ +------------------------+
@ -231,21 +296,19 @@ BibTex-notation is already wide-spread in the academic world, and has shown to b
| │ | | |
| ├── ◻ article_canvas | | Hello friends. |
| │ └ src: ://author.com/article.txt | | |
| │ | | @{visual-meta-start} |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @{visual-meta-start}...` | +------------------------+
| |
| │ | | @friend{friends |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @...` | | } |
| | +------------------------+
| |
+--------------------------------------------------------------+
```
The enduser will only see `welcome human` rendered spatially.
The beauty is that text (AND visual-meta) in Data URI is saved into the scene, which also promotes rich copy-paste.
In both cases will the text get rendered immediately (onto a plane geometry, hence the name '_canvas').
The enduser will only see `welcome human` and `Hello friends` rendered spatially.
The beauty is that text (AND visual-meta) in Data URI promotes rich copy-paste.
In both cases, the text gets rendered immediately (onto a plane geometry, hence the name '_canvas').
The XR Fragment-compatible browser can let the enduser access visual-meta(data)-fields after interacting with the object (contextmenu e.g.).
> NOTE: this is not to say that XR Browsers should not load HTML/PDF/etc-URLs thru `src`, it is just that `text/plain;charset=utf-8;visual-meta=1` is the default.
The mapping between 3D objects and text (src-data) is simple:
Example:
@ -255,22 +318,13 @@ Example:
| |
| index.gltf |
| │ |
| ├── ◻ AI |
| │ └ class: tech |
| │ |
| └ src:`data:@{visual-meta-start} |
| @{glossary-start} |
| @entry{ |
| name="AI", |
| alt-name1 = "Artificial Intelligence", |
| description="Artificial intelligence", |
| url = "https://en.wikipedia.org/wiki/Artificial_intelligence", |
| } |
| @entry{ |
| name="tech" |
| alt-name1="technology" |
| description="when monkeys start to play with things" |
| }` |
| └── ◻ rentalhouse |
| └ class: house |
| └ ◻ note |
| └ src:`data: todo: call owner |
| @house{owner, |
| url = {#.house} |
| }` |
+------------------------------------------------------------------------------------+
```
@ -281,70 +335,106 @@ This allows rich interaction and interlinking between text and 3D objects:
1. When the user surfs to https://.../index.gltf#AI the XR Fragments-parser points the enduser to the AI object, and can show contextual info about it.
2. When (partial) remote content is embedded thru XR Fragment queries (see XR Fragment queries), its related visual-meta can be embedded along.
## BibTex: dumb (non-multiline)
## BibTeX as lowest common denominator for tagging/triple
With around 6 regexes, BibTex tags can be (de)serialized by XR Fragment browsers:
The everything-is-text focus of BiBTex is a great advantage for introspection, and perhaps a necessary bridge towards RDF (extrospective).
BibTeX-appendices (visual-meta e.g.) are already adopted in the physical world (academic books), perhaps due to its terseness & simplicity:
1. <b id="frictionless-copy-paste">frictionless copy/pasting</b> (by humans) of (unobtrusive) content AND metadata
1. an introspective 'sketchpad' for metadata, which can (optionally) mature into RDF later
| characteristic | Plain Text (with BibTeX) | RDF |
|------------------------------------|-----------------------------|---------------------------|
| perspective | introspective | extrospective |
| space/scope | local | world |
| everything is text (string) | yes | no |
| leaves (dictated) text intact | yes | no |
| markup language(s) | no (appendix) | ~4 different |
| polyglot format | no | yes |
| easy to copy/paste content+metadata| yes | depends |
| easy to write/repair | yes | depends |
| easy to parse | yes (fits on A4 paper) | depends |
| infrastructure storage | selfcontained (plain text) | (semi)networked |
| tagging | yes | yes |
| freeform tagging/notes | yes | depends |
| specialized file-type | no | yes |
| copy-paste preserves metadata | yes | depends |
| emoji | yes | depends |
| predicates | free | pre-determined |
| implementation/network overhead | no | depends |
| used in (physical) books/PDF | yes (visual-meta) | no |
| terse categoryless predicates | yes | no |
| nested structures | no | yes |
> To serve humans first, human 'fuzzy symbolical mind' comes first, and ['categorized typesafe RDF hive mind'](https://en.wikipedia.org/wiki/Borg)) later.
## XR text (BibTeX) example parser
Here's a naive XR Text (de)multiplexer in javascript (which also supports visual-meta start/end-blocks):
```
bibtex = {
decode: (str) => {
var vm = {}, st = [vm];
str
.split(/\r?\n/ )
.map( s => s.trim() ).join("\n") // be nice
.split('\n').map( (line) => {
if( line.match(/^}/) && st.length > 1 ) st.shift()
else if( line.match(/^@/) ) st.unshift( st[0][ line.replace(/,/g,'') ] = {} )
else line.replace( /(\w+)\s*=\s*{(.*)}(,)?/g, (m,k,v) => st[0][k] = v )
})
return vm
xrtext = {
decode: {
text: (str) => {
let meta={}, text='', last='', data = '';
str.split(/\r?\n/).map( (line) => {
if( !data ) data = last === '' && line.match(/^@/) ? line[0] : ''
if( data ){
if( line === '' ){
xrtext.decode.bibtex(data.substr(1),meta)
data=''
}else data += `${line}\n`
}
text += data ? '' : `${line}\n`
last=line
})
return {text, meta}
},
bibtex: (str,meta) => {
let st = [meta]
str
.split(/\r?\n/ )
.map( s => s.trim() ).join("\n") // be nice
.replace( /}@/, "}\n@" ) // to authors
.replace( /},}/, "},\n}" ) // which struggle
.replace( /^}/, "\n}" ) // with writing single-line BiBTeX
.split( /\n/ ) //
.filter( c => c.trim() ) // actual processing:
.map( (s) => {
if( s.match(/(^}|-end})/) && st.length > 1 ) st.shift()
else if( s.match(/^@/) ) st.unshift( st[0][ s.replace(/(-start|,)/g,'') ] = {} )
else s.replace( /(\w+)\s*=\s*{(.*)}(,)?/g, (m,k,v) => st[0][k] = v )
})
return meta
}
},
encode: (o) => {
if (typeof o === "object") {
return Object.keys(o).map(k =>
typeof o[k] == "string"
? ` ${k} = {${o[k]}},`
: `${ k.match(/[}{]$/) ? k.replace('}','-start}') : `${k},` }\n` +
`${ VM.encode(o[k])}\n` +
`${ k.match(/}$/) ? k.replace('}','-end}') : '}' }\n`
.split("\n").filter( s => s.trim() ).join("\n")
)
.join("\n")
}
return o.toString();
encode: (text,meta) => {
if( text === false ){
if (typeof meta === "object") {
return Object.keys(meta).map(k =>
typeof meta[k] == "string"
? ` ${k} = {${meta[k]}},`
: `${ k.match(/[}{]$/) ? k.replace('}','-start}') : `${k},` }\n` +
`${ xrtext.encode( false, meta[k])}\n` +
`${ k.match(/}$/) ? k.replace('}','-end}') : '}' }\n`
.split("\n").filter( s => s.trim() ).join("\n")
)
.join("\n")
}
return meta.toString();
}else return `${text}\n${xrtext.encode(false,meta)}`
}
}
var {meta,text} = xrtext.decode.text(str) // demultiplex text & bibtex
meta['@foo{'] = { "note":"note from the user"} // edit metadata
xrtext.encode(text,meta) // multiplex text & bibtex back together
```
> NOTE: XR Fragments assumes non-multiline stringvalues
Here's a more robust decoder, which is more gentle to authors and supports BibTex startstop-sections (used by [visual-meta](https://visual-meta.info)):
```
bibtex = {
decode: (str) => {
var vm = {}, st = [vm];
str
.split(/\r?\n/ )
.map( s => s.trim() ).join("\n") // be nice
.replace( /}@/, "}\n@" ) // to authors
.replace( /},}/, "},\n}" ) // which struggle
.replace( /^}/, "\n}" ) // with writing single-line BiBTeX
.split( /\n/ ) //
.filter( c => c.trim() ) // actual processing:
.map( (s) => {
if( s.match(/(^}|-end})/) && st.length > 1 ) st.shift()
else if( s.match(/^@/) ) st.unshift( st[0][ s.replace(/(-start|,)/g,'') ] = {} )
else s.replace( /(\w+)\s*=\s*{(.*)}(,)?/g, (m,k,v) => st[0][k] = v )
})
return vm
},
}
```
> Still fits on a papertowel, and easy for LLVM's to translate to any language.
> above can be used as a startingpoint for LLVM's to translate/steelman to any language.
# HYPER copy/paste
@ -353,7 +443,7 @@ XR Fragment allows HYPER-copy/paste: time, space and text interlinked.
Therefore, the enduser in an XR Fragment-compatible browser can copy/paste/share data in these ways:
* time/space: 3D object (current animation-loop)
* text: Text object (including visual-meta if any)
* text: TeXt object (including BiBTeX/visual-meta if any)
* interlinked: Collected objects by visual-meta tag
# XR Fragment queries
@ -378,7 +468,7 @@ It's simple but powerful syntax which allows <b>css</b>-like class/id-selectors
* see [an example video here](https://coderofsalvation.github.io/xrfragment.media/queries.mp4)
### including/excluding
## including/excluding
|''operator'' | ''info'' |
|`*` | select all objects (only allowed in `src` custom property) in the <b>current</b> scene (<b>after</b> the default [[predefined_view|predefined_view]] `#` was executed)|
@ -414,11 +504,26 @@ Here's how to write a query parser:
> An example query-parser (which compiles to many languages) can be [found here](https://github.com/coderofsalvation/xrfragment/blob/main/src/xrfragment/Query.hx)
# List of XR URI Fragments
## XR Fragment URI Grammar
```
reserved = gen-delims / sub-delims
gen-delims = "#" / "&"
sub-delims = "," / "="
```
> Example: `://foo.com/my3d.gltf#pos=1,0,0&prio=-5&t=0,100`
| Demo | Explanation |
|-------------------------------|---------------------------------|
| `pos=1,2,3` | vector/coordinate argument e.g. |
| `pos=1,2,3&rot=0,90,0&q=.foo` | combinators |
# Security Considerations
TODO Security
Since XR Text contains metadata too, the user should be able to set up tagging-rules, so the copy-paste feature can :
* filter out sensitive data when copy/pasting (XR text with `class:secret` e.g.)
# IANA Considerations

File diff suppressed because it is too large Load Diff

View File

@ -10,40 +10,214 @@
<workgroup>Internet Engineering Task Force</workgroup>
<abstract>
<t>This draft offers a specification for 4D URLs &amp; navigation, to link 3D scenes and text together with- or without a network-connection.
The specification promotes spatial addressibility, sharing, navigation, query-ing and interactive text across for (XR) Browsers.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies like <eref target="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</eref> &amp; <eref target="https://visual-meta.info">visual-meta</eref>.</t>
<t>This draft offers a specification for 4D URLs &amp; navigation, to link 3D scenes and text together with- or without a network-connection.<br />
The specification promotes spatial addressibility, sharing, navigation, query-ing and tagging interactive (text)objects across for (XR) Browsers.<br />
XR Fragments allows us to enrich existing dataformats, by recursive use of existing proven technologies like <eref target="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</eref> and <eref target="https://visual-meta.info">visual-meta</eref>.<br />
</t>
</abstract>
<section anchor="introduction"><name>Introduction</name>
<t>How can we add more features to existing text &amp; 3D scenes, without introducing new dataformats?
Historically, there's many attempts to create the ultimate markuplanguage or 3D fileformat.
However, thru the lens of authoring their lowest common denominator is still: plain text.
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:</t>
</front>
<ul spacing="compact">
<li>addressibility &amp; navigation of 3D objects: <eref target="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</eref> + (src/href) metadata</li>
<li>bi-directional links between text and spatial objects: <eref target="https://visual-meta.info">visual-meta</eref></li>
</ul>
</section>
<middle>
<section anchor="introduction"><name>Introduction</name>
<t>How can we add more features to existing text &amp; 3D scenes, without introducing new dataformats?<br />
Historically, there's many attempts to create the ultimate markuplanguage or 3D fileformat.<br />
However, thru the lens of authoring their lowest common denominator is still: plain text.<br />
XR Fragments allows us to enrich existing dataformats, by recursive use of existing technologies:<br />
</t>
<ol spacing="compact">
<li>addressibility and navigation of 3D scenes/objects: <eref target="https://en.wikipedia.org/wiki/URI_fragment">URI Fragments</eref> + src/href spatial metadata</li>
<li>hasslefree tagging across text and spatial objects using BiBTeX (<eref target="https://visual-meta.info">visual-meta</eref> e.g.)</li>
</ol>
<blockquote><t>NOTE: The chapters in this document are ordered from highlevel to lowlevel (technical) as much as possible</t>
</blockquote></section>
<section anchor="conventions-and-definitions"><name>Conventions and Definitions</name>
<table>
<thead>
<tr>
<th>definition</th>
<th>explanation</th>
</tr>
</thead>
<ul spacing="compact">
<li>scene: a (local/remote) 3D scene or 3D file (index.gltf e.g.)</li>
<li>3D object: an object inside a scene characterized by vertex-, face- and customproperty data.</li>
<li>metadata: custom properties defined in 3D Scene or Object(nodes)</li>
<li>XR fragment: URI Fragment with spatial hints (<tt>#pos=0,0,0&amp;t=1,100</tt> e.g.)</li>
<li>src: a (HTML-piggybacked) metadata-attribute of a 3D object which instances content</li>
<li>href: a (HTML-piggybacked) metadata-attribute of a 3D object which links to content</li>
<li>query: an URI Fragment-operator which queries object(s) from a scene (<tt>#q=cube</tt>)</li>
<li><eref target="https://visual.meta.info">visual-meta</eref>: metadata appended to text which is only indirectly visible/editable in XR.</li>
</ul>
<t>{::boilerplate bcp14-tagged}</t>
</section>
<tbody>
<tr>
<td>human</td>
<td>a sentient being who thinks fuzzy, absorbs, and shares thought (by plain text, not markuplanguage)</td>
</tr>
<tr>
<td>scene</td>
<td>a (local/remote) 3D scene or 3D file (index.gltf e.g.)</td>
</tr>
<tr>
<td>3D object</td>
<td>an object inside a scene characterized by vertex-, face- and customproperty data.</td>
</tr>
<tr>
<td>metadata</td>
<td>custom properties of text, 3D Scene or Object(nodes), relevant to machines and a human minority (academics/developers)</td>
</tr>
<tr>
<td>XR fragment</td>
<td>URI Fragment with spatial hints (<tt>#pos=0,0,0&amp;t=1,100</tt> e.g.)</td>
</tr>
<tr>
<td>src</td>
<td>(HTML-piggybacked) metadata of a 3D object which instances content</td>
</tr>
<tr>
<td>href</td>
<td>(HTML-piggybacked) metadata of a 3D object which links to content</td>
</tr>
<tr>
<td>query</td>
<td>an URI Fragment-operator which queries object(s) from a scene (<tt>#q=cube</tt>)</td>
</tr>
<tr>
<td>visual-meta</td>
<td><eref target="https://visual.meta.info">visual-meta</eref> data appended to text which is indirectly visible/editable in XR.</td>
</tr>
<tr>
<td>requestless metadata</td>
<td>opposite of networked metadata (RDF/HTML request-fanouts easily cause framerate-dropping, hence not used a lot in games).</td>
</tr>
<tr>
<td>FPS</td>
<td>frames per second in spatial experiences (games,VR,AR e.g.), should be as high as possible</td>
</tr>
<tr>
<td>introspective</td>
<td>inward sensemaking (&quot;I feel this belongs to that&quot;)</td>
</tr>
<tr>
<td>extrospective</td>
<td>outward sensemaking (&quot;I'm fairly sure John is a person who lives in oklahoma&quot;)</td>
</tr>
<tr>
<td><tt></tt></td>
<td>ascii representation of an 3D object/mesh</td>
</tr>
</tbody>
</table></section>
<section anchor="core-principle"><name>Core principle</name>
<t>XR Fragments strives to serve humans first, machine(implementations) later, by ensuring hasslefree text-to-thought feedback loops.<br />
This also means that the repair-ability of machine-matters should be human friendly too (not too complex).<br />
</t>
<blockquote><t>&quot;When a car breaks down, the ones without turbosupercharger are easier to fix&quot;</t>
</blockquote></section>
<section anchor="list-of-uri-fragments"><name>List of URI Fragments</name>
<table>
<thead>
<tr>
<th>fragment</th>
<th>type</th>
<th>example</th>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td><tt>#pos</tt></td>
<td>vector3</td>
<td><tt>#pos=0.5,0,0</tt></td>
<td>positions camera to xyz-coord 0.5,0,0</td>
</tr>
<tr>
<td><tt>#rot</tt></td>
<td>vector3</td>
<td><tt>#rot=0,90,0</tt></td>
<td>rotates camera to xyz-coord 0.5,0,0</td>
</tr>
<tr>
<td><tt>#t</tt></td>
<td>vector2</td>
<td><tt>#t=500,1000</tt></td>
<td>sets animation-loop range between frame 500 and 1000</td>
</tr>
<tr>
<td><tt>#......</tt></td>
<td>string</td>
<td><tt>#.cubes</tt> <tt>#cube</tt></td>
<td>object(s) of interest (fragment to object name or class mapping)</td>
</tr>
</tbody>
</table><blockquote><t>xyz coordinates are similar to ones found in SVG Media Fragments</t>
</blockquote></section>
<section anchor="list-of-metadata-for-3d-nodes"><name>List of metadata for 3D nodes</name>
<table>
<thead>
<tr>
<th>key</th>
<th>type</th>
<th>example (JSON)</th>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td><tt>name</tt></td>
<td>string</td>
<td><tt>&quot;name&quot;: &quot;cube&quot;</tt></td>
<td>available in all 3D fileformats &amp; scenes</td>
</tr>
<tr>
<td><tt>class</tt></td>
<td>string</td>
<td><tt>&quot;class&quot;: &quot;cubes&quot;</tt></td>
<td>available through custom property in 3D fileformats</td>
</tr>
<tr>
<td><tt>href</tt></td>
<td>string</td>
<td><tt>&quot;href&quot;: &quot;b.gltf&quot;</tt></td>
<td>available through custom property in 3D fileformats</td>
</tr>
<tr>
<td><tt>src</tt></td>
<td>string</td>
<td><tt>&quot;src&quot;: &quot;#q=cube&quot;</tt></td>
<td>available through custom property in 3D fileformats</td>
</tr>
</tbody>
</table><t>Popular compatible 3D fileformats: <tt>.gltf</tt>, <tt>.obj</tt>, <tt>.fbx</tt>, <tt>.usdz</tt>, <tt>.json</tt> (THREEjs), <tt>COLLADA</tt> and so on.</t>
<blockquote><t>NOTE: XR Fragments are file-agnostic, which means that the metadata exist in programmatic 3D scene(nodes) too.</t>
</blockquote></section>
<section anchor="navigating-3d"><name>Navigating 3D</name>
<t>Here's an ascii representation of a 3D scene-graph which contains 3D objects (<tt></tt>) and their metadata:</t>
<t>Here's an ascii representation of a 3D scene-graph which contains 3D objects <tt></tt> and their metadata:</t>
<artwork> +--------------------------------------------------------+
| |
@ -53,12 +227,13 @@ XR Fragments allows us to enrich existing dataformats, by recursive use of exist
| │ └ href: #pos=1,0,1&amp;t=100,200 |
| │ |
| └── ◻ buttonB |
| └ href: other.fbx |
| └ href: other.fbx | &lt;-- file-agnostic (can be .gltf .obj etc)
| |
+--------------------------------------------------------+
</artwork>
<t>An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the <tt>buttonA</tt> and <tt>buttonB</tt>.
<t>An XR Fragment-compatible browser viewing this scene, allows the end-user to interact with the <tt>buttonA</tt> and <tt>buttonB</tt>.<br />
In case of <tt>buttonA</tt> the end-user will be teleported to another location and time in the <strong>current loaded scene</strong>, but <tt>buttonB</tt> will
<strong>replace the current scene</strong> with a new one (<tt>other.fbx</tt>).</t>
</section>
@ -84,25 +259,83 @@ In case of <tt>buttonA</tt> the end-user will be teleported to another location
| |
+--------------------------------------------------------+
</artwork>
<t>An XR Fragment-compatible browser viewing this scene, lazy-loads and projects <tt>painting.png</tt> onto the (plane) object called <tt>canvas</tt> (which is copy-instanced in the bed and livingroom).
Also, after lazy-loading <tt>ocean.com/aquarium.gltf</tt>, only the queried objects <tt>bass</tt> and <tt>tuna</tt> will be instanced inside <tt>aquariumcube</tt>.
Resizing will be happen accordingly to its placeholder object (<tt>aquariumcube</tt>), see chapter Scaling.</t>
<t>An XR Fragment-compatible browser viewing this scene, lazy-loads and projects <tt>painting.png</tt> onto the (plane) object called <tt>canvas</tt> (which is copy-instanced in the bed and livingroom).<br />
Also, after lazy-loading <tt>ocean.com/aquarium.gltf</tt>, only the queried objects <tt>bass</tt> and <tt>tuna</tt> will be instanced inside <tt>aquariumcube</tt>.<br />
Resizing will be happen accordingly to its placeholder object (<tt>aquariumcube</tt>), see chapter Scaling.<br />
</t>
</section>
<section anchor="embedding-text"><name>Embedding text</name>
<t>Text in XR has to be unobtrusive, for readers as well as authors.
We think and speak in simple text, and given the new paradigm of XR interfaces, logically (spoken) text must be enriched <em>afterwards</em> (lazy metadata).
Therefore, XR Fragment-compliant text will just be plain text, and <strong>not yet-another-markuplanguage</strong>.
In contrast to markup languages, this means humans need to be always served first, and machines later.</t>
<blockquote><t>Basically, XR interfaces work best when direct feedbackloops between unobtrusive text and humans are guaranteed.</t>
</blockquote><t>In the next chapter you can see how XR Fragments enjoys hasslefree rich text, by supporting <eref target="https://visual.meta.info">visual-meta</eref>(data).</t>
<section anchor="text-in-xr-tagging-linking-to-spatial-objects"><name>Text in XR (tagging,linking to spatial objects)</name>
<t>We still think and speak in simple text, not in HTML or RDF.<br />
It would be funny when people would shout <tt>&lt;h1&gt;FIRE!&lt;/h1&gt;</tt> in case of emergency.<br />
Given the myriad of new (non-keyboard) XR interfaces, keeping text as is (not obscuring with markup) is preferred.<br />
Ideally metadata must come <strong>later with</strong> text, but not <strong>obfuscate</strong> the text, or <strong>in another</strong> file.<br />
</t>
<blockquote><t>Humans first, machines (AI) later.</t>
</blockquote><t>This way:</t>
<ol spacing="compact">
<li>XR Fragments allows &lt;b id=&quot;tagging-text&quot;&gt;hasslefree XR text tagging&lt;/b&gt;, using BibTeX metadata <strong>at the end of content</strong> (like <eref target="https://visual.meta.info">visual-meta</eref>).</li>
<li>XR Fragments allows hasslefree &lt;a href=&quot;#textual-tag&quot;&gt;textual tagging&lt;/a&gt;, &lt;a href=&quot;#spatial-tag&quot;&gt;spatial tagging&lt;/a&gt;, and &lt;a href=&quot;#supra-tagging&quot;&gt;supra tagging&lt;/a&gt;, by mapping 3D/text object (class)names to BibTeX</li>
<li>inline BibTeX is the minimum required <strong>requestless metadata</strong>-layer for XR text, RDF/JSON is great but optional (and too verbose for the spec-usecases).</li>
<li>Default font (unless specified otherwise) is a modern monospace font, for maximized tabular expressiveness (see <eref target="#core-principle">the core principle</eref>).</li>
<li>anti-pattern: hardcoupling a mandatory <strong>obtrusive markuplanguage</strong> or framework with an XR browsers (HTML/VRML/Javascript) (see <eref target="#core-principle">the core principle</eref>)</li>
<li>anti-pattern: limiting human introspection, by immediately funneling human thought into typesafe, precise, pre-categorized metadata like RDF (see <eref target="#core-principle">the core principle</eref>)</li>
</ol>
<t>This allows recursive connections between text itself, as well as 3D objects and vice versa, using <strong>BiBTeX-tags</strong> :</t>
<artwork> +--------------------------------------------------+
| My Notes |
| |
| The houses seen here are built in baroque style. |
| |
| @house{houses, &lt;----- XR Fragment triple/tag: tiny &amp; phrase-matching BiBTeX
| url = {#.house} &lt;------------------- XR Fragment URI
| } |
+--------------------------------------------------+
</artwork>
<t>This sets up the following associations in the scene:</t>
<ol spacing="compact">
<li>&lt;b id=&quot;textual-tagging&quot;&gt;textual tag&lt;/b&gt;: text or spatial-occurences named 'houses' is now automatically tagged with 'house'</li>
<li>&lt;b id=&quot;spatial-tagging&quot;&gt;spatial tag&lt;/b&gt;: spatial object(s) with class:house (#.house) is now automatically tagged with 'house'</li>
<li>&lt;b id=&quot;supra-tagging&quot;&gt;supra-tag&lt;/b&gt;: text- or spatial-object named 'house' (spatially) elsewhere, is now automatically tagged with 'house'</li>
</ol>
<t>Spatial wires can be rendered, words can be highlighted, spatial objects can be highlighted, links can be manipulated by the user.</t>
<blockquote><t>The simplicity of appending BibTeX (humans first, machines later) is demonstrated by <eref target="https://visual-meta.info">visual-meta</eref> in greater detail, and makes it perfect for GUI's to generate (bib)text later. Humans can still view/edit the metadata manually, by clicking 'toggle metadata' on the 'back' (contextmenu e.g.) of any XR text, anywhere anytime.</t>
</blockquote>
<section anchor="default-data-uri-mimetype"><name>Default Data URI mimetype</name>
<t>The <tt>src</tt>-values work as expected (respecting mime-types), however:</t>
<t>The XR Fragment specification bumps the traditional default browser-mimetype</t>
<t><tt>text/plain;charset=US-ASCII</tt></t>
<t>to:</t>
<t><tt>text/plain;charset=utf-8;visual-meta=1</tt></t>
<t>This means that <eref target="https://visual.meta.info">visual-meta</eref>(data) can be appended to plain text without being displayed.</t>
<t>to a green eco-friendly:</t>
<t><tt>text/plain;charset=utf-8;bibtex=^@</tt></t>
<t>This indicates that any bibtex metadata starting with <tt>@</tt> will automatically get filtered out and:</t>
<ul spacing="compact">
<li>automatically detects textual links between textual and spatial objects</li>
</ul>
<t>It's concept is similar to literate programming.
Its implications are that local/remote responses can now:</t>
<ul spacing="compact">
<li>(de)multiplex/repair human text and requestless metadata (see <eref target="#core-principle">the core principle</eref>)</li>
<li>no separated implementation/network-overhead for metadata (see <eref target="#core-principle">the core principle</eref>)</li>
<li>ensuring high FPS: HTML/RDF historically is too 'requesty' for game studios</li>
<li>rich send/receive/copy-paste everywhere by default, metadata being retained (see <eref target="#core-principle">the core principle</eref>)</li>
<li>less network requests, therefore less webservices, therefore less servers, and overall better FPS in XR</li>
</ul>
<blockquote><t>This significantly expands expressiveness and portability of human text, by <strong>postponing machine-concerns to the end of the human text</strong> in contrast to literal interweaving of content and markupsymbols (or extra network requests, webservices e.g.).</t>
</blockquote><t>For all other purposes, regular mimetypes can be used (but are not required by the spec).<br />
To keep XR Fragments a lightweight spec, BiBTeX is used for text-spatial object mappings (not a scripting language or RDF e.g.).</t>
<blockquote><t>Applications are also free to attach any JSON(LD / RDF) to spatial objects using custom properties (but is not interpreted by this spec).</t>
</blockquote></section>
<section anchor="url-and-data-uri"><name>URL and Data URI</name>
@ -112,41 +345,31 @@ In contrast to markup languages, this means humans need to be always served firs
| │ | | |
| ├── ◻ article_canvas | | Hello friends. |
| │ └ src: ://author.com/article.txt | | |
| │ | | @{visual-meta-start} |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @{visual-meta-start}...` | +------------------------+
| |
| │ | | @friend{friends |
| └── ◻ note_canvas | | ... |
| └ src:`data:welcome human @...` | | } |
| | +------------------------+
| |
+--------------------------------------------------------------+
</artwork>
<t>The enduser will only see <tt>welcome human</tt> rendered spatially.
The beauty is that text (AND visual-meta) in Data URI is saved into the scene, which also promotes rich copy-paste.
In both cases will the text get rendered immediately (onto a plane geometry, hence the name '_canvas').
<t>The enduser will only see <tt>welcome human</tt> and <tt>Hello friends</tt> rendered spatially.
The beauty is that text (AND visual-meta) in Data URI promotes rich copy-paste.
In both cases, the text gets rendered immediately (onto a plane geometry, hence the name '_canvas').
The XR Fragment-compatible browser can let the enduser access visual-meta(data)-fields after interacting with the object (contextmenu e.g.).</t>
<blockquote><t>NOTE: this is not to say that XR Browsers should not load HTML/PDF/etc-URLs thru <tt>src</tt>, it is just that <tt>text/plain;charset=utf-8;visual-meta=1</tt> is the default.</t>
</blockquote><t>The mapping between 3D objects and text (src-data) is simple:</t>
<t>The mapping between 3D objects and text (src-data) is simple:</t>
<t>Example:</t>
<artwork> +------------------------------------------------------------------------------------+
| |
| index.gltf |
| │ |
| ├── ◻ AI |
| │ └ class: tech |
| │ |
| └ src:`data:@{visual-meta-start} |
| @{glossary-start} |
| @entry{ |
| name=&quot;AI&quot;, |
| alt-name1 = &quot;Artificial Intelligence&quot;, |
| description=&quot;Artificial intelligence&quot;, |
| url = &quot;https://en.wikipedia.org/wiki/Artificial_intelligence&quot;, |
| } |
| @entry{ |
| name=&quot;tech&quot; |
| alt-name1=&quot;technology&quot; |
| description=&quot;when monkeys start to play with things&quot; |
| }` |
| └── ◻ rentalhouse |
| └ class: house |
| └ ◻ note |
| └ src:`data: todo: call owner |
| @house{owner, |
| url = {#.house} |
| }` |
+------------------------------------------------------------------------------------+
</artwork>
<t>Attaching visualmeta as <tt>src</tt> metadata to the (root) scene-node hints the XR Fragment browser.
@ -158,7 +381,213 @@ This allows rich interaction and interlinking between text and 3D objects:</t>
<li>When (partial) remote content is embedded thru XR Fragment queries (see XR Fragment queries), its related visual-meta can be embedded along.</li>
</ol>
</section>
</section>
<section anchor="bibtex-as-lowest-common-denominator-for-tagging-triple"><name>BibTeX as lowest common denominator for tagging/triple</name>
<t>The everything-is-text focus of BiBTex is a great advantage for introspection, and perhaps a necessary bridge towards RDF (extrospective).
BibTeX-appendices (visual-meta e.g.) are already adopted in the physical world (academic books), perhaps due to its terseness &amp; simplicity:</t>
<ol spacing="compact">
<li>&lt;b id=&quot;frictionless-copy-paste&quot;&gt;frictionless copy/pasting&lt;/b&gt; (by humans) of (unobtrusive) content AND metadata</li>
<li>an introspective 'sketchpad' for metadata, which can (optionally) mature into RDF later</li>
</ol>
<table>
<thead>
<tr>
<th>characteristic</th>
<th>Plain Text (with BibTeX)</th>
<th>RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>perspective</td>
<td>introspective</td>
<td>extrospective</td>
</tr>
<tr>
<td>space/scope</td>
<td>local</td>
<td>world</td>
</tr>
<tr>
<td>everything is text (string)</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>leaves (dictated) text intact</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>markup language(s)</td>
<td>no (appendix)</td>
<td>~4 different</td>
</tr>
<tr>
<td>polyglot format</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>easy to copy/paste content+metadata</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>easy to write/repair</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>easy to parse</td>
<td>yes (fits on A4 paper)</td>
<td>depends</td>
</tr>
<tr>
<td>infrastructure storage</td>
<td>selfcontained (plain text)</td>
<td>(semi)networked</td>
</tr>
<tr>
<td>tagging</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>freeform tagging/notes</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>specialized file-type</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>copy-paste preserves metadata</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>emoji</td>
<td>yes</td>
<td>depends</td>
</tr>
<tr>
<td>predicates</td>
<td>free</td>
<td>pre-determined</td>
</tr>
<tr>
<td>implementation/network overhead</td>
<td>no</td>
<td>depends</td>
</tr>
<tr>
<td>used in (physical) books/PDF</td>
<td>yes (visual-meta)</td>
<td>no</td>
</tr>
<tr>
<td>terse categoryless predicates</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>nested structures</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table><blockquote><t>To serve humans first, human 'fuzzy symbolical mind' comes first, and <eref target="https://en.wikipedia.org/wiki/Borg">'categorized typesafe RDF hive mind'</eref>) later.</t>
</blockquote></section>
<section anchor="xr-text-bibtex-example-parser"><name>XR text (BibTeX) example parser</name>
<t>Here's a naive XR Text (de)multiplexer in javascript (which also supports visual-meta start/end-blocks):</t>
<artwork>xrtext = {
decode: {
text: (str) =&gt; {
let meta={}, text='', last='', data = '';
str.split(/\r?\n/).map( (line) =&gt; {
if( !data ) data = last === '' &amp;&amp; line.match(/^@/) ? line[0] : ''
if( data ){
if( line === '' ){
xrtext.decode.bibtex(data.substr(1),meta)
data=''
}else data += `${line}\n`
}
text += data ? '' : `${line}\n`
last=line
})
return {text, meta}
},
bibtex: (str,meta) =&gt; {
let st = [meta]
str
.split(/\r?\n/ )
.map( s =&gt; s.trim() ).join(&quot;\n&quot;) // be nice
.replace( /}@/, &quot;}\n@&quot; ) // to authors
.replace( /},}/, &quot;},\n}&quot; ) // which struggle
.replace( /^}/, &quot;\n}&quot; ) // with writing single-line BiBTeX
.split( /\n/ ) //
.filter( c =&gt; c.trim() ) // actual processing:
.map( (s) =&gt; {
if( s.match(/(^}|-end})/) &amp;&amp; st.length &gt; 1 ) st.shift()
else if( s.match(/^@/) ) st.unshift( st[0][ s.replace(/(-start|,)/g,'') ] = {} )
else s.replace( /(\w+)\s*=\s*{(.*)}(,)?/g, (m,k,v) =&gt; st[0][k] = v )
})
return meta
}
},
encode: (text,meta) =&gt; {
if( text === false ){
if (typeof meta === &quot;object&quot;) {
return Object.keys(meta).map(k =&gt;
typeof meta[k] == &quot;string&quot;
? ` ${k} = {${meta[k]}},`
: `${ k.match(/[}{]$/) ? k.replace('}','-start}') : `${k},` }\n` +
`${ xrtext.encode( false, meta[k])}\n` +
`${ k.match(/}$/) ? k.replace('}','-end}') : '}' }\n`
.split(&quot;\n&quot;).filter( s =&gt; s.trim() ).join(&quot;\n&quot;)
)
.join(&quot;\n&quot;)
}
return meta.toString();
}else return `${text}\n${xrtext.encode(false,meta)}`
}
}
var {meta,text} = xrtext.decode.text(str) // demultiplex text &amp; bibtex
meta['@foo{'] = { &quot;note&quot;:&quot;note from the user&quot;} // edit metadata
xrtext.encode(text,meta) // multiplex text &amp; bibtex back together
</artwork>
<blockquote><t>above can be used as a startingpoint for LLVM's to translate/steelman to any language.</t>
</blockquote></section>
</section>
<section anchor="hyper-copy-paste"><name>HYPER copy/paste</name>
@ -168,7 +597,7 @@ Therefore, the enduser in an XR Fragment-compatible browser can copy/paste/share
<ul spacing="compact">
<li>time/space: 3D object (current animation-loop)</li>
<li>text: Text object (including visual-meta if any)</li>
<li>text: TeXt object (including BiBTeX/visual-meta if any)</li>
<li>interlinked: Collected objects by visual-meta tag</li>
</ul>
</section>
@ -213,7 +642,6 @@ Useful in case of (preventing) showing/hiding objects in nested scenes (instance
<eref target="https://github.com/coderofsalvation/xrfragment/blob/main/example/assets/query.gltf#L192">» example 3D asset</eref>
<eref target="https://github.com/coderofsalvation/xrfragment/issues/3">» discussion</eref></t>
</section>
</section>
<section anchor="query-parser"><name>Query Parser</name>
<t>Here's how to write a query parser:</t>
@ -237,13 +665,42 @@ Useful in case of (preventing) showing/hiding objects in nested scenes (instance
</ol>
<blockquote><t>An example query-parser (which compiles to many languages) can be <eref target="https://github.com/coderofsalvation/xrfragment/blob/main/src/xrfragment/Query.hx">found here</eref></t>
</blockquote></section>
</section>
<section anchor="list-of-xr-uri-fragments"><name>List of XR URI Fragments</name>
<section anchor="xr-fragment-uri-grammar"><name>XR Fragment URI Grammar</name>
<artwork>reserved = gen-delims / sub-delims
gen-delims = &quot;#&quot; / &quot;&amp;&quot;
sub-delims = &quot;,&quot; / &quot;=&quot;
</artwork>
<blockquote><t>Example: <tt>://foo.com/my3d.gltf#pos=1,0,0&amp;prio=-5&amp;t=0,100</tt></t>
</blockquote><table>
<thead>
<tr>
<th>Demo</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><tt>pos=1,2,3</tt></td>
<td>vector/coordinate argument e.g.</td>
</tr>
<tr>
<td><tt>pos=1,2,3&amp;rot=0,90,0&amp;q=.foo</tt></td>
<td>combinators</td>
</tr>
</tbody>
</table></section>
</section>
<section anchor="security-considerations"><name>Security Considerations</name>
<t>TODO Security</t>
<t>Since XR Text contains metadata too, the user should be able to set up tagging-rules, so the copy-paste feature can :</t>
<ul spacing="compact">
<li>filter out sensitive data when copy/pasting (XR text with <tt>class:secret</tt> e.g.)</li>
</ul>
</section>
<section anchor="iana-considerations"><name>IANA Considerations</name>
@ -254,6 +711,6 @@ Useful in case of (preventing) showing/hiding objects in nested scenes (instance
<t>TODO acknowledge.</t>
</section>
</front>
</middle>
</rfc>

View File

@ -2,6 +2,6 @@
set -e
mmark RFC_XR_Fragments.md > RFC_XR_Fragments.xml
xml2rfc --v3 RFC_XR_Fragments.xml # RFC_XR_Fragments.txt
mmark --html RFC_XR_Fragments.md | grep -vE '(<!--{|}-->)' > RFC_XR_Fragments.html
#sed 's|visual-meta|<a href="https://visual-meta.org">visual-meta</a>|g' -i RFC_XR_Fragments.html
xml2rfc --v3 RFC_XR_Fragments.xml # RFC_XR_Fragments.txt
sed -i 's/Expires: .*//g' RFC_XR_Fragments.txt